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Abstract-A generalized Fourier law is shown to follow logically from the principle of frame-indifference 
and the second law of thermodynamics. It can be used in the process of heat transfer in which a relative 
macroscopic motion is present between two sides exchanging heat. The classical Fourier law is recovered 

as a special case of it. 

1. INTRODUCTION 

THE CLASSICAL Fourier law is a fundamental law in 
heat transfer. It relates heat flux to the temperature 
gradient. As an experimental law, it is used to calculate 
the heat flux through a process in which no macro- 
scopic relative motion is present between two sides 
which exchange heat. Two such processes are heat 
conduction in solids and convective heat transfer 
between a uiscous fluid and a solid wall. In practical 
engineering processes, however, it is common that 
relative motion coexists with the heat transfer between 
two sides exchanging heat. A typical example is con- 
vective heat transfer in moving fluids. Even in solids,, 
as well as the heat transfer the body usually undergoes 
deformation motion. Experience shows that such a 
relative motion would significantly affect heat transfer 
density or heat flux. Therefore, it is necessary to extend 
the classical Fourier law to the processes of heat trans- 
fer accompanied by the macroscopic relative motion 
between two sides exchanging heat. 

The convective heat transfer study employs analyti- 
cal, numerical or experimental methods to get velocity 
and temperature fields of the fluid. Then, the Fourier 
law is used to calculate the heat flux between the fluid 
and the wall. It is the limitation mentioned above 
of the classical Fourier law that precludes one from 
obtaining the heat flux distribution in the fluid even 
though the velocity and temperature distributions are 
in agreement. Such a heat flux distribution, however, 
plays an important role for proposing techniques of 
heat transfer enhancement or insulation, and is 
required in many fields. Shown in Fig. 1 is a typical 
pressure-driven vortex flow in a rotating curved 
square channel. The symmetry of the flow allows one 
to show only half the cross section of the channel. 
Heat transfer among the vortices is pre-required in 
order to study the evolution, stability of the vortices 
and transition to turbulent flow. 

Joseph Fourier, an outstanding mathematician and 
physicist, proposed a proportional relation between 
heat flux and temperature gradient in 1807 based on 
experiences and investigations, which is now called 
the Fourier law [ 1,2]. It has been confirmed by many 
experiments, i.e. it holds for many media in the usual 
temperature gradient range. However, much evidence 
shows that this proportional relation no longer holds 
if the temperature gradient is large. 

As a typical example of Cauchy fluxes [3-51, the 
heat flux was shown to exist as a vector field whose 
scalar product with the normal to the surface results 
in the surface density of the flux. Cauchy [6] first 
established a result of this type in 1823 under an 
assumption that the density depends only on the 
normal. Such an assumption was shown to be essen- 
tially a consequence of the other assumptions on the 
flux by No11 in 1957 [7]. This inspired new research 
which led to important developments as shown in refs. 
[3,4] and [g-13]. 

Believing that the classical Fourier law should be 
regarded as a limiting approximation, valid only for 
sufficiently homogeneous temperature fields, to some 
general nonlinear constitutive assumption for heat 
flux, Coleman and Mizel [14] assumed that the heat 
flux is a smooth, but nonlinear, function of the tem- 
perature and the first n spatial gradients of the tem- 
perature for the prbcess of heat transfer in rigid 
bodies. By employing the method of Coleman and 
No11 [lS], they introduced thermodynamics to the 
analysis. The consideration of thermodynamics and 
symmetry, taken together, yielded a complete fourth- 
order theory of heat conduction [ 141. 

The classical Fourier law leads to a field equation 
for temperature which allows wave propagation at an 
infinite speed. This was observed by Cattaneo in 1948 
[16]. Starting from Maxwell’s idea [l7] and from the 
paper by Cattaneo [16], an extensive amount of litera- 
ture [ 18-281 has contributed to the elimination of the 
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NOMENCLATURE 

any vector 
any symmetric tensor 
any vector 
any symmetric tensor 
any vector 
velocity strain tensor 
eigenvector 
vector-valued function 
any invertible tensor or deformation 
gradient tensor 
eigenvector 
invariant 
thermal conductivity tensor 
velocity gradient tensor 
heat-flux vector 
rotation tensor 
rotation tensor 
polar coordinate 
position vector 
time 
thermophysical properties 
velocity of plate 
velocity 
skew part of tensor L. 

Greek symbols 

; 
coefficient 
coefficient 

Y coefficient 
? scalar-valued function determined by 

energy equation 

6 temperature 
pk eigenvalue of symmetric tensor 
r time instant 

: 
polar coordinate 
scalar-valued function 

S’ 
scalar-valued function 
scalar-valued function 

$1 
scalar-valued function 
scalar-valued function 

w scalar-valued function determined by 
equation of motion 

ti’(r, t) d2w/dt ar 

s2 skew tensor. 

Subscripts 
b bottom plate (surface) 
i index, inner surface 
.i index 
k index 
0 outer surface 
t top plate (surface). 

Superscripts 
* quantity observed by observer * 
t transpose of tensor 
-1 inverse of tensor. 

Other symbols 
V gradient 
v for all. 

‘paradox of instantaneous propagation of thermal dis- 
turbances’. The approach used is known as extended 
irreversible thermodynamics, which introduces time 
derivatives of the heat-flux vector, Cauchy stress ten- 
sor and its trace into the classical Fourier law by 
preserving the entropy principle. To do so, extended 
irreversible thermodynamics considers that the non- 
equilibrium entropy density not only depends on the 
two thermodynamic variables but also on the heat flux 
vector and the Cauchy stress tensor. The relaxation 
effects, then, were introduced by a simple modification 
of Gibbs relation. The Fourier law modified in this 
way established an implicit equation relating heat-flux 
vector, velocity and temperature. 

Rational thermodynamics, a different approach to 
similar problems, derives the restrictions that the 
second law of thermodynamics (in the form of the 
Clausius-Duhem inequality due to Clausius, Duhem, 
and Truesdell and Toupin [29]) places on the heat flux 
vector [lo, 14, 15, 30-351. It was shown that heat-flux 
vector must satisfy the Fourier inequality [15, 321, 
which states that the projection of the heat-flux vector 
on the temperature-gradient vector is non-positive. 

An important consequence of the Fourier inequality 
is the non-existence of a piezo-caloric effect [ 15, 321. 
The energy in the form of heat is, therefore, trans- 
ferred from one body to another body (or from one 
part of a body to another part of the same body) only 
when the bodies are at different temperatures. The 
thermal conductivity tensor K, defined by 

q = -KVQ 

was assumed in general to be a function of defor- 
mation gradient F and temperature 0 [32]. By 
imposing the principle of frame-indifference, K was 
shown to be a symmetric tensor by Wang [32]. This 
condition is one of the so-called Onsager relations 
[32]. The detailed form of K as a function of F, 
however, still remains to be established. 

The motivation of the present work comes from the 
desire to establish the relation between heat flux and 
temperature gradient in the heat transfer process with 
macroscopic relative motion between two sides 
exchanging heat. In this paper, the result is termed as 
the generalized Fourier law, which is shown to follow 
logically from the second law of thermodynamics and 
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FIG. 1. A typical vortex flow in a rotating curved square channel 

the principle of frame-indifference, and the classical where Q is an arbitrary rotation tensor, r a position 
Fourier law is recovered as a special case of it. The vector of material point, and c(t) is an arbitrary 
thermal conductivity is found to be a function of tem- vector-valued function of time t. 
perature, temperature gradient and thermophysical On substitution of expressions (1) and (3) into 
properties of the medium in general. expression (2), one has 

f(e,T.P.,QV78,QLQT+ilQ’,Qr+Qv+c(t)) 
2. VELOCITY VS HEAT FLUX 

Lemma 1 
Heat flux is independent of velocity. 
Proof. Experiences show that heat flux q is depen- 

dent on the temperature 8, thermophysical properties 
of the medium, temperature gradient VB and velocity 
gradient tensor L. Suppose that it is also dependent 
on the velocity of the medium v itself, then 

q = f (0, T.P., VB, L, v) (1) 

where f is a vector-valued function. T.P. represents 
the thermophysical properties of the medium. 

For another observer *, the principle of frame- 
indifference gives 

q* = f(0*, (T.P.)*, (V0*)*, L*, v*) (2) 

in which superscript * represents the quantities 
observed by observer *. 

From the principle of observer transformations 
[361, 

o* = 0 (T.P.)* = T.P. 

q* = Qq (V6*)* = Q(t)V@ 

L* = QLQ’ +QQ’ r* = Qr+c(t) 

v* = dr*/dt = Qr+Qv+e(t) I 
(3) 

= Qf(B,T.P.,VB,L,v) VQandc(t). (4) 

Since expression (4) is true for all Q, it must be true 
for Q = 1. Take Q = 1, then Q = 0. Equation (4) 
gives 

f(e, T.P., VB, L, v+C) = f(e,T.P., VB, L, v) Ve(t). 

(5) 

This implies that f is independent of velocity. 
Expressions (1) and (4) are, then, simplified as 

q = f(0, T.P., VB, L) (6) 

f(O,T.P.,QV’B,QLQT+QQT) 

= Qf(0, T.P., VB, L) VQ. (7) 

3. VELOCITY GRADIENT TENSOR VS HEAT FLUX 

Since L can be written as the sum of a symmetric 
tensor D (velocity strain tensor) and a skew tensor W, 
then expression (7) may be rewritten as 

f(O,T.P.,QVO,QDQT+QWQT+QQT) 

= Qf(0, T.P., VB, L) t/Q. (8) 

It can be easily shown that D and W are unique. 
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Lemma 2 
For any fixed time 7 and all time t 

Q(t) = exp[d(t-z)] = f (r& 
n=O n! 

is a rotation tensor provided that fi is a fixed skew 
tensor. 

Proof: From the theory of series, one may conclude 
that the series 

= (1-T)” ^ c- nl R” n=cl . 

is absolutely convergent to exp [fh(t - r)]. 
Let 

Q(t) = exp@(t-z)] = f (th” 
n-0 n! 

Then 

Q(7) = 1 

Q(l) = !fy =fi+(t-T)&y+$(t-7)*&+ 

= ri[l+(t-7)~+~(t-7)*&=2* 

++(t-7)3di3+...] =$=&Q(t) 

and 

(Q’Q)’ = QT(ri+fiT)Q = 0 

if fi is a skew tensor. Therefore 

QT(t)Q(t) = Q’(z)Q@) = 1 Vt. (9) 

Since (det F)’ = det F tr @F-l) for all invertible F 
[37], then 

(det Q)’ = det Q tr (QQ’) = det Q tr @QQ’) 

= detQtr(@ = 0. 

Therefore, 

det Q(t) = detQ(7) = det 1 = 1 Vt. (10) 

Expressions (9) and (10) are the mathematical form 
of Lemma 2. 

Lemma 3 
For rotation tensor Q(t) = exp @(t-7)10, one 

can pick Q(7) and Q(7)Q’(z) to be arbitrary, inde- 
pendent rotation and skew tensors respectively at any 
instant 7, where Q is any fixed rotation tensor, and 
fi is any fixed skew tensor. 

Proof Since both Q and exp [a( t - 7)] are rotation 
tensors (Lemma 2) then Q(t) = exp@(t-7)]Q is 
also a rotation tensor for all time t, and 

Q(7) = Q (11) 

Q(7)QT(7) = tiQ(r)Q’(~) = 6. (12) 

They are clearly independent rotation and skew ten- 

sors if Q and fi are arbitrary fixed rotation and skew 
tensors respectively. 

Lemma 4 
L affects heat flux only through velocity strain ten- 

sor D. 
Proof. To prove this, choose Q(t) defined in Lemma 

3 as the rotation tensor in expression (8) while, for any 
instant 7, - QWQT ]r is used as the skew tensor 0, i.e. 
fi = - QWQ’], (such an fi is a skew tensor since 
fi’ = -QWTQTJ, = QWQTlr = -fi). Then, at time 
t = 7, expression (8) gives 

f(O,T.P., QV0, QDb’) = Qf(Cr,T.P., V0,L) VQ. 

(13) 

Since this holds for all rotation tensors Q, it must 
hold for Q = 1. Let Q = 1, then expression (13) gives 

f(0, T.P., VB, L) = f(0, T.P., V&D) (14) 

or 

q = f(O, T.P., VB, D). (15) 

4. TEMPERATURE GRADIENT VS HEAT FLUX 

Expression (15) and the principle of frame-indiffer- 
ence together give 

q* = f(O*, (T.P.)*, (Ve*)*, D*). (16) 

On substitution of expressions (3), (15) and D* = 
QDQ’ [36] into expression (16), one gets 

f(0, T.P., QVf?, QDQ’) = Qf@, T.P., VB, D) VQ. 
(17) 

Also the second law of thermodynamics requires 

f(e,T.P., -VO,D) = -f(O,T.P., V&D). (18) 

Since the velocity strain tensor D is a real, sym- 
metric tensor, it has three real eigenvalues. The three 
eigenvalues can be distinct, identical, or two of them 
can be identical. In this paper, a necessary condition 
of expressions (17) and ( 18) is to be found only under 
the condition that the three eigenvalues are distinct. 
Similar results may be obtained for the other two 
cases. 

Lemma 5 
VB, DVB, D*VB are linearly independent if three 

eigenvalues of D are distinct. 
Proof. Let pk and f, (k = 1,2, 3) be the eigenvalues 

and eigenvectors of D. Then D may be represented, in 
its spectral form, as 

(19) 

The linear independence of fk (k = 1,2,3) allows one 
to write ve as 
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ve = (W),f, (20) 

in which (Ve), = Ve . f,. 
Suppose that Ve, DVe and D2V0 are linearly depen- 

dent for all D and VB ; there are c(, p and y which are 
not all zero, such that 

ave+ /?Dve + yD2VB = 0. (21) 

Substituting expressions (19) and (20) into 
expression (2 1) gives 

kir (a+B~k+Y&)(V(M = 0. 

This implies 

(22) 

(u+B~k+&)(V@k = 0 (Jr = 1,233) (23) 

since f, (k = 1,2, 3) are linearly independent. 
For arbitrary VB, (V(I), need not be zero, so 

a+/&+y& = 0 (k = 1,2,3) (24) 

and this requires a = /I = y = 0 for distinct pk. This is 
contrary to the hypothesis. Lemma 5, then, has been 
proved. 

Applying Lemma 5 to the heat flux vector, one has 

f(e, T.P., ve, D) = &o(e, T.P., ve, D)ve 

+4,(e,T.p.,ve,D)~~o+4,(e,T.p., ve,~)~zve 

(25) 

and 

f(e, T.P., - ve, D) 

= -bO(e,~.p., -ve,D)ve-4,(e,T.p., 

-Ve,D)DVtI-+,(e,T.P., -VB,D)D’VB. 

(26) 

Substituting (25) and (26) into (18) gives 

h(e, T.P., ve, D) - 40(e, T.P., - ve, D)]ve 

+[&(e,T.P.,VB,D)-d,(&T.P., -W,D)]DVe 

+[&(e,T.P.,Ve,D)-c$,(e,T.P., -Ve,D)]D*Ve = 0. 

(27) 

This implies 

4i(e,T.P., Ve,D) = 4;(0,T.P., -Ve,D) (i = 0,1,2) 

(28) 

since VB, DVB and D*Ve are linearly independent. 
To satisfy this requirement, take 

4,(e,T.p.,ve,~) = +,(e,~.~.,veave,~) 

(i = 0, 1,2). (29) 

Then expressions (25) and (29) give 

f(e, T.P., QV6, QDQ’) 

= Q(&Ve+lj,DVe+$*D*Ve) (30) 

in which 

4; = $?(B, T.P., QVe 0 QV0, QDQ’) 

and 

Qf(e,T.P.,VB,D) = Q(i,h~VB+~,DVB+~,D*Ve). 
(31) 

Substituting expressions (30) and (31) into (17) 
gives 

($o-~o)ve+($, -+,)Dve+(&+h2)D*ve = 0. 

(32) 

This implies, by Lemma 5, that 

ll/ite, T.P., QVe 0 QVO, QDQT) 
= rji(O,T.P., VB @ V0, D) VQ. (33) 

Lemma 6 
Suppose 

tit@, T.P., Qb C3 Qb, QBQ') 
= $(0, T.P., b 0 b, B) Vb and B 

then 

+(0, T.P., a @ a, A) = $(e, T.P., b 0 b, B) 

whenever Jk(a, A) = J,(b, B) (k = 1,2,. . ,6). Where 

J1(a,A) = trA J2(a,A) = f[(trA)‘-tr(A*)] 

J3 (a, A) = det A J4(a,A) = a*Aa 

JS(a,A) = a*A*a J6(a,A) = ]a1 

and a and b are two arbitrary vectors, A and B are 
two arbitrary symmetric tensors. 

Proof. Since J,(a, A) = J,(b, B) (k = 1, 2, 3), ten- 
sors A and B have the same eigenvalues. Let pLk be 
their eigenvalues, then A and B may be written as 

where ek and f, (k = 1, 2, 3) are eigenvectors of A and 
B respectively. 

Define 

Q = ek @ f, 
then Q is a rotation tensor, and 

e, = Qf, A = QBQ’ A* = QB’Q’ (i = 1,2,3). 

(34) 

Then, applying J,(a, A) = Jk(br B) (k = 4, 5, 6), one 
gets 
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(Q’aTb)*f, = 0 (k = l-2,3) (36) 

if pi (k = I, 2, 3) are distinct. 
Note that. iff, (k = 1.2.3) are linearly independent. 

then 

a= *Qb a@a=Qb@Qb. 

By hypothesis, 

$(0. T.P., b 0 b,B) = $(e,T.P., Qb 0 Qb, QBQ’) 

= Il/(@, T.P., a @ a, A) 

in which A = QBQ’ (expression (34)) and a @ a = 
Qb @ Qb are used. That is, 

1//(0, T.P., b @ b, B) = $[&T.P..J,(b,B)] 

(k= 1,2,...,6) (37) 

if 

$(0, T.P., Qb 0 Qb, QBQ’) = $(&T.P., b @ b,B) 

Vb and B. (38) 

The converse is also true since Jk(Qb, QBQ’) = 
J,(b, B) (k = 1, 2,. ,6). 

Lemma I 
The principle of frame-indifference and the second 

law of thermodynamics require the heat flux to be 

q = f(H,T.P.,VH,D) = (&l+$,D+&D’)VO 

where 

4$ = 4, [Q, T.P.. J,(VO, D)l 

(i=O,1,2 k=l,2 ,..., 6) 

Proc$ Applying Lemma 6 to expression (33). one 
has 

i,CO.T.P..V(IOVO,D) = $,[H,T.P.. J,(VO.D)]. 

(39) 

Substituting expressions (39) and (29) into (25) gives 

q = f(0. T.P., VB, D) = (&l + 4,D-t &D’)VH (40) 

where 

4, = 4, [H, T.P., J,(VH, D)] 

(i=O. 1,2 k= 1.2 .___. 6). 

This is the generalized Fourier law. It is obvious that 
q = 0 if VH = 0. There is no piezo-caloric effect. 
This is in agreement with refs. [14, 15, 321. 

If the three eigenvalues of D are not distinct, one 
can still obtain expression (40) with 4, = & = 0 (for 
the case of three identical eigenvalues) or C/I~ = 0 (for 
the case of two identical eigenvalues) by a similar 
method. Therefore, expression (40) is valid for all 
cases. 

5. DISCUSSION 

Rewrite the generalized Fourier law (40) as 

q = -KVC) 

then 

K = p(&,l+$,D+&D2). (41) 

Symmetry of velocity strain tensor D, then, ensures 
that thermal conductivity tensor K is symmetric. This 
is in agreement with ref. [32]. 

Since heat flux q must satisfy Fourier inequality [ 14, 
15, 321, i.e. 

then 

VB*KVt’> 0 VVO (42) 

which implies that K is positive semi-definite. And 
since K is, in practice, an invertible tensor, it is positive 
definite. The same conclusion may be obtained by 
noting that the inequality in (42) is for irreversible 
processes and heat transfer is an irreversible process. 

If the medium is at rest, has uniform motion or is 
in rigid body rotation, then 

D=O Jk=O (k= 1,2,...,5) 

and the generalized Fourier law reduces to 

q = &,(H, T.P., V@V0. 

This is the clasical Fourier law. Here, C#Q, is the thermal 
conductivity of the medium. It is, in general, a func- 
tion of temperature, temperature gradient and the 
thermophysical properties of the medium. 

The generalized Fourier law may be simplified for 
some special motions such as one-dimensional flow or 
axis-symmetrical flow of incompressible fluids. Two 
examples are heat transfers in processes of simple 
shear flow and axial shear motion. 

For simple shear flow between two infinite parallel 
plates (Fig. 2), it is easy to show that 

FIG. 2 Simple shear flow between two infinite parallel plates. 
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D =q(ej @e,+e,@e,) 

where w(t) can be determined by solving the equation 
of motion. Temperature is governed by the energy 
equation which contains &, 4r and &. 4, (i = 0, 
1, 2) is material-dependent and is to be determined 
through experiments. This prevents one from solving 
the energy equation to obtain temperature dis- 
tribution at the present stage. For the case of constant 
temperatures of top and bottom plates, however, the 
temperature gradient in the Auid is expected to be 
parallel to e, as the first-order approximation, i.e. 

V8 = ~(r, r)ez 

in which r/(r, t) is to be determined by solving the 
energy equation. and the generalized Fourier law 
reduces to 

and 

Je = lvll 
which states that q is not parallel to the temperature 
gradient in general. 

Consider an axial shear motion of a circular cyl- 
indrical tube (Fig. 3) ; it is easy to show that 

D = $‘(Y, f) (e3 @ e,+e, @ e,). 

This displaces the circle Y = constant by the amount 
w(r, t), which can be determined by the equation of 

motion, along the axis of the cylinder. Suppose that 
inner and outer surfaces remain at the same constant 
temperature. As the first-order approximation, one 
may expect that the temperature gradient is parallel 
to the axis of the cylinder, i.e. 

VB = q(r, t)e, 

when top and bottom surfaces remain at different 
constant temperatures. Here ~(r, t) is to be determined 
by the energy equation. The generalized Fourier law, 
then, reduces to 

.I 

q = V(r. t) 
[ 

*4,e, + c,b,, -t (ti “, ‘I)* (b3 e, ( > .I 
which shows that the heat flux has an e, component 
in general, although the temperature gradient is along 
the axis e3. For this case, 

J, = J, = J, = 0 

* 

and 

A striking feature from these two examples is that 
heat flux is not parallel to the temperature gradient, 
in general, for either of the two cases, although the 
temperature gradient and the velocity are per- 
pendicular to each other for the case of simple shear 
flow, but parallel to each other for the case of axial 
shear motion. 

Like thermal conductivity, the detailed expressions 
of &, 4, and & are material-dependent and need to 
be determined through experiments. Once they are 
determined, the generalized Fourier law can serve as 
a tool for looking for techniques of heat transfer 

(4 (b) 
Fro. 3. Axial shear motion of a circular cytindricat tube. 
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enhancement or insulation. Furthermore, it also can 
be used to find new media satisfying certain require- 
ments of heat transfer characteristics. 
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